Non-uniform acceleration
Rotational Quantities
ω=ΔtΔθ=v/r α=ΔtΔω=a/r Circular motion
Fc=rmv2=mrω2 ac=rv2=rω2 ω=2πf Circular motion - Banked corners
(Fn)2−(Fg)2 Simple harmonic motion
a=−x0ω2 Displacement
x=x0cos(ωt) Velocity
x=−x0ω∗sin(ωt) a=±ω(x0)2−x2 Acceleration
x=−x0ω2cos(ωt) Simple harmonic motion + Natural frequency
Pendulum
T=2πgl f0=2π1lg Spring
T=2πkm f0=2π1mk Energy in Simple harmonic motion
Etotal=Ep+Ek Spring:
Etotal=21k(x0)2 For moving system:
Etotal=21m(v0)2 Etotal=21mω2(x0)2 At any point:
Ek=21mω2((x0)2−x2) For Pendulums
Etotal=mgh0 Thermal Physics
Kelvin
T(k)=θ(degC)+273.15 Ideal gasses
Number of particles=Number of moles∗Avogadro’s number Number of moles=Molar massMass ΔW=PΔV Gas laws
Boyle's law
P∝V1 PV=Constant Charles' law
- T : Temperature in Kelvin
Mean squared speed
Ek=21m<c2>=23NnRT K : Boltzmann constant
Ek=23KT Nm : Total mass
PV=NKT=31Nm<C2>
Internal Energy
U=ΣEk+ΣEp Specific heat capacity
- Δh : Heat added from/to the environment
- ΔQ : Heat added from/to the system
Δh+ΔQ=mcΔT
Specific latent heat
Sensing devices and Ultrasound
Acoustic impedance
Ratio of reflected to incident Ultrasound
- R : Ratio
- Ir : Intensity reflected
R=I0Ir=(z2+z1)2(z2−z1)2
Attenuation of Ultrasound
TAttenuated=I0e−μx Strain Gauge
R=AμL Potential divider
Vout=R+RTVin∗RT Electronics
Op-amps
- A0 : Open-loop gain of op-amp
A0=VinVout
Vout=A0(V+−V−) Gain of inverting feedback loop
- Rf : Resistance of inverting feedback loop
A=VinVout=R−Rf
Gain of non-inverting feedback loop
- Rf : Resistance of non-inverting feedback loop
A=VinVout=1+R1−Rf
Signal attenuation
dB=10∗log(PinPout) dB=Attenuation per unit length∗Length Signal to noise Ratio
SNR(dB)=10∗log(PNoisePSignal) Gravitational fields
Orbit
- G : Gravitational constant: 6.67x10−11
Fc(Required)=rmv2=r2GMm=Fg(Provided)
Newton's law of Gravitation
Fg=r2GMm Gravitational field strength
g=r2GM Gravitational Potential Energy
Ep=r−GMm Gravitational Potential
ϕ=r−GM Escape Velocity
ΔEp(Gain)=Ep(∞)−Ep(Surface) since
ΔEp(Gain)=ΔEk(Lost) reGMm=21mv2 re2GM=vescape Gravitational Potential
Φ=r−GM Keplar's third law
T2∝r3 Electric fields
Coulomb's law
- ϵ0=Permittivity of free space=8.85∗10−12
F=4πϵ01∗r2Q1Q2=r2KQ1Q2
Electric field strength
E=4πϵ0r2q1 Electric potential between two points
ΔVAB=ΔrKq1=Kq1(rB1−rA1) Potential Gradient
Capacitance
C=VtotalQtotal C∝A; C∝d1 Capacitors in Series
Ctotal1=C11+C21+...+Cn1 Capacitors in Parallel
Ctotal=C1+C2+...+Cn Energy in Capacitors
W=21QV W=21CV2 Charged conducting isolated space
V=4πϵRQ=RKQ Since C=VQ, C=4πϵ0R Magnetic fields
Magnetic Flux density
B=ILF Force on a current-carrying conductor inside a magnetic field
- θ : Angle between B and I
F=BIL∗sin(θ)
Force on a charged particle moving through a magnetic field
- θ : Angle between B and v
F=Bqv∗sin(θ)
Hall Effect
- n : Density of charge carriers
- t : Thickness of wafer
VH=nqtIB